Exercise 10

(a) Find the slope of the tangent to the curve $y=1 / \sqrt{x}$ at the point where $x=a$.
(b) Find equations of the tangent lines at the points $(1,1)$ and $\left(4, \frac{1}{2}\right)$.
(c) Graph the curve and both tangents on a common screen.

Solution

Part (a)

Start by finding the slope of the tangent line to the curve at $x=a$.

$$
\begin{aligned}
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} & =\lim _{x \rightarrow a} \frac{\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{a}}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\frac{\sqrt{a}}{\sqrt{a}} \cdot \frac{1}{\sqrt{x}}-\frac{1}{\sqrt{a}} \cdot \frac{\sqrt{x}}{\sqrt{x}}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\frac{\sqrt{a}-\sqrt{x}}{\sqrt{a} \sqrt{x}}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\sqrt{a}-\sqrt{x}}{\sqrt{a} \sqrt{x}(x-a)} \\
& =\lim _{x \rightarrow a} \frac{\sqrt{a}-\sqrt{x}}{\sqrt{a} \sqrt{x}(\sqrt{x}+\sqrt{a})(\sqrt{x}-\sqrt{a})} \\
& =\lim _{x \rightarrow a} \frac{-(\sqrt{x}-\sqrt{a})}{\sqrt{a} \sqrt{x}(\sqrt{x}+\sqrt{a})(\sqrt{x}-\sqrt{a})} \\
& =\lim _{x \rightarrow a} \frac{-1}{\sqrt{a} \sqrt{x}(\sqrt{x}+\sqrt{a})} \\
& =\frac{-1}{\sqrt{a} \sqrt{a}(\sqrt{a}+\sqrt{a})} \\
& =\frac{-1}{a(2 \sqrt{a})} \\
& =-\frac{1}{2 a^{3 / 2}}
\end{aligned}
$$

Part (b)

For the point $(1,1)$, the slope is

$$
m=-\frac{1}{2(1)^{3 / 2}}=-\frac{1}{2}
$$

The equation of the line is then

$$
\begin{gathered}
y-1=-\frac{1}{2}(x-1) \\
y-1=-\frac{1}{2} x+\frac{1}{2} \\
y=-\frac{1}{2} x+\frac{3}{2} .
\end{gathered}
$$

For the point $\left(4, \frac{1}{2}\right)$, the slope is

$$
m=-\frac{1}{2(4)^{3 / 2}}=-\frac{1}{2(2)^{3}}=-\frac{1}{16} .
$$

The equation of the line is then

$$
\begin{gathered}
y-\frac{1}{2}=-\frac{1}{16}(x-4) \\
y-\frac{1}{2}=-\frac{1}{16} x+\frac{1}{4} \\
y=-\frac{1}{16} x+\frac{3}{4} .
\end{gathered}
$$

$\underline{\text { Part (c) }}$

Below is a graph of $y=1 / \sqrt{x}$ versus x along with the tangent lines at $x=1$ and $x=4$.

